Synthesis of HfB2 Powders by Carbothermal Reduction
نویسندگان
چکیده مقاله:
In this research, solid state carbothermal synthesis of HfB2 Nano powders was investigated. For this purpose, HfO2,H3BO3, carbon active or phenolic resin were used as raw materials for carbothermal reaction. After 2-4 hours of milling the raw materials by a planetary ball in an ethanol media, the mixture was heat dried and pressed in to disks under pressure of 20-30 bar. The disks were then placed in a graphite crucible and heat-treated at 1500–1600 °C for 1 hour under flowing Ar atmosphere. The powder product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and backscattered electron (BSE) imaging. The heat treatment temperature, amount of boric acid, milling and heat treatment time were recognized as four factors influencing synthesis and size of HfB2 powder particles. SEM images reported irregular morphologies with a particle size of about 2-4 µm for HfB2 powder. The best sample was obtained at a molar ratio of HfO2 : phenolic resin carbon: boric acid = 1:5:5 at 1600 °C after 1 hour of heat treatment. XRD results confirmed synthesis of pure HfB2 with a crystallite size of about 60 nm.
منابع مشابه
Synthesis of Ti4O7 Nanoparticles by Carbothermal Reduction Using Microwave Rapid Heating
The polymer electrolyte fuel cell (PEFC) is an attractive power generation method from the perspective of environmental protection. Carbon is usually used as a catalyst support in PEFC, but it is oxidized under high electrical potential conditions. Ti4O7 is expected as a new catalyst support because of its high electrical conductivity and chemical resistivity. Though Ti4O7 as a catalyst support...
متن کاملRoute to GaN and VN assisted by carbothermal reduction process.
A route to prepare nitrides, such as GaN, VN, and other nitrides, is reported. The reaction pathway involves a two-step process by using the as-synthesized a-C3N3.69 as precursor. The route is so potent that a series of nitrides can be directly synthesized from their oxides at moderate temperatures. A striking feature of this method lies in that a-C3N3.69 is found to play double roles as both c...
متن کاملALUMINOTHERMIC-CARBOTHERMAL REDUCTION SYNTHESIS OF NANO CRYSTALLINE Al2O3-Ti(C,N) COMPOSITE WITH DIFFERENT BED TYPES
Ceramic-matrix composites containing TiC-TiN have been used in a variety of application because of their superior properties such as high hardness, good wear resistance and high chemical stability. In this research, effect of coke and coke/calcium beds in synthesis of Al 2O3-Ti(C, N) composites using alumino-carbothermic reduction of TiO 2 has been investigated. Al, TiO 2 and active ca...
متن کاملSYNTHESIS OF AL2O3-NI COMPOSITE POWDERS BY CO-PRECIPITATION METHOD
The synthesis of micro-sized, uniformly distributed Al2O3-15Vol% Ni powders were studied through three step co-precipitation of hydroxides mixtures from proper solution, calcination at air atmosphere and final step of calcined powders in a carbon bed. Al and Ni hydroxide and amorphous phase were first obtained from their salt’s solutions through chemical co-precipitation method by adjusti...
متن کاملIn Situ Investigation of the Carbothermal Reduction of ZnO Nanowires
Carbothermal reduction is among the oldest chemical processes, commonly used in the production of metals from the corresponding metal oxides or ores (e.g., iron from iron oxides). By using carbon as a reducing agent, decomposition of metal oxides at temperatures much lower than their typical decomposition temperatures can occur. However, a detailed fundamental understanding of such a reaction p...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 38 شماره 4
صفحات 75- 85
تاریخ انتشار 2020-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023